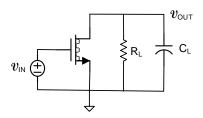
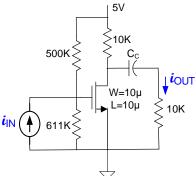
EE 330 Homework 13 Spring 2024 Due 1:00 p.m. Wednesday Apr 17 (no late submissions accepted this week)


If parameters of semiconductor processes are needed beyond what is given in a specific problem or question, assume a CMOS process is available with the following key process parameters; $\mu_n C_{OX}=100\mu A/V^2$, $\mu_p C_{OX}=\mu_n C_{OX}/3$, $V_{TNO}=0.75V$, $V_{TPO}=-0.75V$, $C_{OX}=4fF/\mu^2$, $\lambda = 0$. Correspondingly, assume all npn BJT transistors have model parameters $J_S=10^{-14}A/\mu^2$ and $\beta=100$ and all pnp BJT transistors have model parameters $J_S=10^{-14}A/\mu^2$ and $\beta=100$ and all pnp BJT transistors have model parameters JS if the emitter area of a transistor is not given, assume it is $100\mu^2$. Parasitic capacitance parameters for a sample 0.5u CMOS process appear in the Appendix.

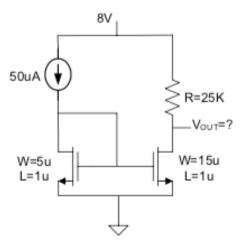
Problem 1

The small-signal equivalent circuit of the standard common-source amplifier biased to operate in the saturation region is shown below where a *small* capacitor, C_L , has been placed on the amplifier output.

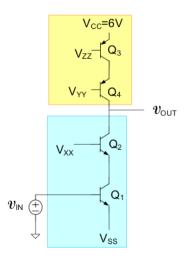
Express the small-signal gain of the amplifier, $A_V(s) = \frac{v_{OUT}(s)}{v_{IN}(s)}$, in terms of the small-signal model


parameters.

Problem 2

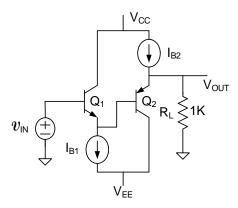

Consider the following amplifier where the input is a small-signal current source i_{IN} . Assume the coupling capacitor C_c is very large. Assume the transistor is in a process with $u_nC_{OX}=100uA/V^2$, C_{OX} =4fF/u², V_{THn}=0.75V, and λ =0. Assume all parasitic capacitances in the transistor are negligible in this circuit except for C_{GS}.

- a) Draw the small-signal equivalent circuit
- b) Determine the dc small-signal current gain $A_{i} = \frac{i_{OUT}}{i_{OUT}}$
- c) Determine the frequency where the magnitude of the current gain drops to one.

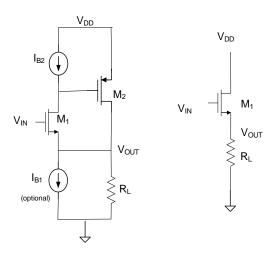

Problem 3

Find V_{OUT} for the circuit below.

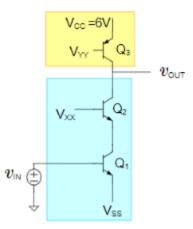
Problem 4


Assume the biasing voltages have been selected so that the quiescent output voltage is 2V and that all transisotrs are operating in the forward active region. Determine the small-signal voltage gain if $A_{E1} = A_{E2} = 40\mu^2$ and $A_{E3} = A_{E4} = 60\mu^2$. Assume the transistors all have parameters $\beta = 100$ and $V_{AF} = 100V$.

Problem 5 Assume $A_{E1}=A_{E2}=5\mu^2$, $I_{B1}=I_{B2}=1$ mA and $\beta_1=\beta_2=100$. The supply voltages are +5V and 5V

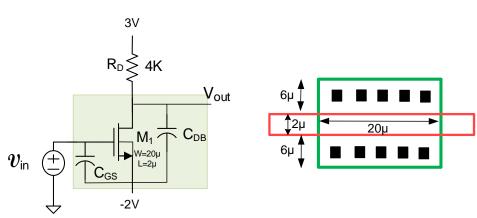

and -5V.

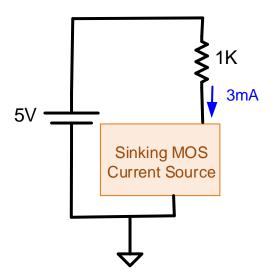
- a) Determine the small signal voltage gain.
- b) Determine the quiescent output voltage
- c) Determine the small-signal input impedance
- d) Determine the maximum output swing.


Problem 6 Consider the two amplifier circuit shown below where $V_{DD}=5V$, $I_{B1}=5\mu A$, $I_{B2}=10\mu A$, and $R_L=5K$. Assume the transistors are identically sized with $W=10\mu$ and $L=2\mu$.

- a) Give the small-signal voltage gain of the two amplifiers in terms of the small-signal model parameters
- b) Numerically determine the small-signal voltage gain for the two amplifiers if V_{INQ} =1V.
- c) Determine the quiescent output voltage and the difference between the quiescent output voltages of the two amplifiers if $V_{INQ}=1V$.
- d) Repeat part c) if V_{INQ} =4V.

Problem 7


Assume the quiescent output is 2V and all transistors are in the forward active region of operation. Find the small signal voltage gain if $A_{E1}=A_{E2}=55\mu^2$ and $A_{E3}=75\mu^2$. Assume the transistors all have parameters $\beta = 100$ and $V_{AF}=100V$.


Problem 8

Consider the following amplifier. Assume the dominant parasitic capacitances in the transistor are C_{GS} and C_{DB} . They are depicted in the green shaded region that comprises the transistor M_1 . The layout of the transistor, not to scale, is also shown below.

- a) Draw the small-signal equivalent circuit that can be used to determine the high-frequency response
- b) Obtain an expression for the small-signal voltage gain in terms of the small-signal model parameters
- c) Determine the 3dB bandwidth (in Hz) for this amplifier.

Problem 9 Design a sinking current source that can sink a current of 3mA from a 1K resistor with one terminal connected to a 5V dc voltage source. You have available for this design any number of MOS transistor, the 5V source, and the 1K resistor.

Appendix: Parasitic Capacitances in a sample 0.5u CMOS Process

CAPACITANCE PARAMETERS	5 N+	P+	POLY	M1	М2	MЗ	M4	М5	М6	R_W	D_N_W M5	P N_W	UNITS
Area (substrate)	942	11(63 106	34	14	9	6	5	3		123	125	aF/um^2
Area (N+active)			8484	55	20	13	11	9	8				aF/um^2
Area (P+active)			8232										aF/um^2
Area (poly)				66	17	10	7	5	4				aF/um^2
Area (metal1)					37	14	9	6	5				aF/um^2
Area (metal2)						35	14	9	6				aF/um^2
Area (metal3)							37	14	9				aF/um^2
Area (metal4)								36	14				aF/um^2
Area (metal5)									34			984	aF/um^2
Area (r well)	920	С											aF/um^2
Area (d well)										582			aF/um^2
Area (no well)	13	7											aF/um^2
Fringe (substrate)	212	2 2	235	41	35	29	21	14					aF/um
Fringe (poly)				70	39	29	23	20	17				aF/um
Fringe (metal1)					52	34		22	19				aF/um
Fringe (metal2)						48	35	27	22				aF/um
Fringe (metal3)							53	34	27				aF/um
Fringe (metal4)								58	35				aF/um
Fringe (metal5)									55				aF/um
Overlap (N+active)			89	5									aF/um
Overlap (P+active)			73	7									aF/um